
C29 

Journal of Organometallic Chemistry, 326 (1987) C29-C32 
Ekvier Sequoia S.A., Lausanne - Printed in The Netherlands 

Preliiinary communication 

THE CHEMISTRY OF CYCLOPENTADIENYL- 
RUTHENACYCLOPENI’ATRLENES: NOVEL CARBON MONOXIDE AND 
ISOCYANIDE INSERTION REACTIONS IN [(~s-CsHs)Ru(C,Ph,H,)Br]; 
CRYSTAL STRUCTURE OF ((~5-CsHs)Ru(~4-CsPh2H2NBut)Br] 

MICHEL 0. ALBERS, DIRK J.A. DE WAAL, DAVID C. LILES, DAVID J. ROBINSON 

and ERIC SINGLETON* 

National Chemical Research Laboratory, Council for Scientific and Industrial Reserach, P.O. Box 395, 

Pretoria 0001 (Republic of South Africa) 

(Received January 28th, 1987) 

Reaction of the novel ruthenacyclopentatriene [( q5-C,H,)Ru(C,Ph,H,)Br] (1) 
with isocyanides gives the imino-2,5-diphenylcyclopentadiene complexes [( n5- 
C,H,)Ru(n4-C,Ph,H,NR)Br] (2, R= Me, Et, Cy, t-Bu, 2,6-Me&H,); a novel 
fluxional process involving phenyl substituent rotation and imino nitrogen inversion 
has been identified for 2 (R = t-Bu, 2,6-Me&H,), the interpretation of which is 
supported by the X-ray crystal structure determination of 2 (R = t-Bu). 

The cyclodimerization of two molecules of alkyne at a range of transition metal 
centres gives metallacyclopentadiene complexes [l], species central to the catalyzed 
cyclotrimerization of alkynes to aromatics [2], and the catalyzed reactions of alkynes 
with nitriles [3] and isonitriles [4]. We recently reported [5] the novel cyclodimeriza- 
tion of phenylacetylene at the ruthenium(I1) centre in [($-C,H~)RU(TJ~-C~H,~)B~] 
(&Hi, = cycloocta-l,$diene) a reaction which does not give a metallacyclo- 
pentadiene but rather the first example of a metallacyclopentatriene. Herein we wish 
to report on novel carbon monoxide and isocyanide insertion reactions in [(q5- 
C,H,)Ru(C,Ph,H,)Br], results which pertain to the mode of formation of organic 
nitrogen compounds in the transition metal catalyzed reactions of alkynes with 
isocyanides [4]. 

Reaction of the ruthenacyclopentatriene [(q5-C,H,)Ru(C,Ph,H,)Br] (1) [5] with 
a stoichiometric amount of isocyanide RNC (R = Me, Et, Cy, t-Bu, 2,6-Me&H,) 
occurs rapidly at room temperature (Scheme 1) giving high yields of purple 
crystalline solids having the composition [(n5-C,H,)Ru(C,Ph,H,)(CNR)Br] (2) [6]. 
The IR spectra of these compounds typically display v(C=N) bands (1650-1600 
cm-‘) strongly suggesting that isocyanide insertion, has occurred giving imino-2,5- 
diphenylcyclopentadiene complexes [7,8]. The ‘H NMR spectrum of 2 (303 K, 
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R = t-Bu) shows the expected singlets at 8 4.98 (5H) and 0.92 (9H) ppm for the 
cyclopentadienyl ring and the isocyanide methyl groups respectively, and two broad 
resonances for the phenyl protons at S 7.87 (4H) and 7.20 (6H) ppm. No signals 
attributable to the metallacycle ring protons are evident. A similarly broadened 
spectrum is observed for 2 (R = 2,6-Me&H,), but for the remaining alkyl iso- 
cyanide products 2 (R = Me, Et, Cy), the expected two doublets for the ring protons 
are observed between S 6.55 and 6.85 ppm. These data, together with the fact that 
similarly well resolved ‘H NMR spectra may be obtained for 2 (R = t-Bu, 2,6- 
Me,C,H,) on cooling to 243 K, suggests that a fluxional process involving inversion 
at the nitrogen centre [9] occurs when bulky isocyanide substituents are involved. 
The explanation for these observations was not immediately apparent from the 
available information and for this reason the X-ray crystal structure of 2 (R = t-Bu) 
has been determined [lo]. 

The structure of 2 (R = t-Bu) is given in Fig. 1. The most striking feature is the 
rotation away from co-planarity with the cyclopentadiene ring (inter-plane angle: 
86(l)“) of one phenyl ring due to non-bonded repulsions from the t-butylimino 
substituent. This orientation clearly removes potential resonance stabilization which 
would accrue to the ligand system from a co-planar phenyl moiety, thereby raising 
the ground state energy of the molecule. This effectively lowers the activation energy 
of the N-inversion process [9], introducing a pathway for novel fluxionality involv- 
ing phenyl substituent rotation and imino nitrogen inversion (Scheme 2). By 
analogy, the inherent resonance stabilization arising from conjugation of the aromatic 
ring of the 2,6dimethylphenyl group in 2 (R = 2,6-Me&H,) is clearly reason for 
this group to be planar with the iminocyclopentadiene ring. Thus, in exerting its 
maximum cone angle effect [ll], the imino substituent once again forces from 
co-planarity one of the pentadiene-phenyl substituents and introduces a fluxional 
phenyl ring rotation-nitrogen inversion process observable by NMR spectroscopy. 
Clearly for the remaining compounds 2 (R = Me, Et, Cy) such considerations are 
not pertinent, and as in the only other comparable systems [7,8], this mitigates 
against fhtxionality being observed for these compounds [12]. 

An investigation of the kinetics of the conversion 1 + 2 (R = t-Bu) in acetone 
and in the presence of excess isocyanide by stopped-flow spectrophotometry showed 
a pseudo first-order rate law: -d[l]/dt = kobd[l] where i&d = k[t-BuNC]. The 
specific rate constant and associated activation parameters are: k = 13.7 s-l M-’ 
(25”C), AH* = 9.1 kcal mol-‘, AS* = -24.2 cal mol-’ K-‘. The kinetic results 
therefore favour a rate-determining associative mode of activation which most likely 
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Fig. 1. A perspective view of 2 (R = t-B@ showing the atom numbering scheme. Selected bond lengths 
(A) and angles (O): Ru-Br 2.568(l), Ru-C(12) 2.24(l), Ru-C(13) 2.14(l), Ru-C(14) 2.14(2), Ru-CQ5) 

2.28(l), C(ll)-c(12) 1.53(2), C(12)-C(13) 1.40(2), C(13)-C(14) 1.41(2), C(14)-C(15) 1.39(2), c(15)-c(l1) 
1.52(2), C(ll)-N(1) 1.27(2), N(l)-C(1) 1.46(2), Ru-C(cp) (mean) 2.20(2), C(15)-C(ll)-C(12) 100.2(10), 

C(ll)-C(12)-C(13) 106.3(12), c(12)-c(13)-c(14) 109.0(11), C(13)-C(14)-c(15) 109.5(12), C(14)- 
C(15)-C(l1) 107.2(12). 

involves nucleophilic attack at the metal centre [5] by isocyanide to produce the 
intermediate [($-C,H,)Ru(C,Ph,H,)(CNR)Br] (3) (Scheme 1). The conversion 
3 --* 2, which would include “insertion” and subsequent rearrangement [7], must be 
a facile process and non rate determining since the persistence of well defined 
isobestic points (520, 590 nm) during the entire course of the overall reaction rules 
out any significant build-up of 3. The possibility of isocyanide attack on a 
coordinated carbene atom directly [13] followed by a rapid rearrangement to 2 can 
be discounted in this system on the basis of the very similar activation parameters 
obtained for the reaction of P(OMe), [5] and t-BuNC with 1. Significantly different 
AH* values would be expected if these two nucleophiles were to respectively, attack 
the metal and carbene carbon centres, each of significantly different electrophilic 
character. 

SCHEME 2 
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The reaction of either 1 or 2 with excess isocyanide proceeds rapidly at room 
temperature via facile imino-2,Sdiphenylcyclopentadiene displacement and the 
quantitative formation of [(r)‘-C,H,)Ru(CNR),Br]; the isolation of the organic 
product can be effected by column chromatography. This reaction thus represents 
the first recorded displacement of this ring system from a metal ion [7,8], and 
consequently, the first example of the metal mediated stoichiometric preparation of 
this molecule which shows synthetic potential in organic chemistry. Under a carbon 
monoxide atmosphere 1 reacts rapidly at room temprature to give the v4-cyclo- 
pentadienone complex [(T$-C,H~)RU(~~-C~P~~H~O)B~], a 2,kliphenyl substituted 
analogue of the recently reported [($-C,H,)Ru(q4-C,H40)Br] [14]. Kinetically this 
transformation appears to follow the same pattern as observed for the isocyanide, 
reactions. 
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